ELIDASA LEARN – ADVANCED CHEMISTRY

FORM SIX TOPICAL TEST

CHEMISTRY (ELECTROCHEMISTRY & CHEMICAL KINETICS)

TIME: 3 Hours
Date: November, 2025

Instructions:

- 1. This paper consists of ten (10) questions.
- 2. Answer all questions.
- 3. Show all your working clearly where necessary.
- 4. Write your examination number on every page.
- 5. You may use the following constants:

Faraday Constant, $F = 96500 \text{ C mol}^{-1}$ Gas Constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ 1 Faraday = 96500 Coulombs

ELECTROCHEMISTRY SECTION

1.

- (a) Define the following terms:
- (i) Oxidation
- (ii) Reduction
- (iii) Standard electrode potential [3 marks]
- (b) Write the conventional cell representation and overall cell reaction for a galvanic cell formed by $\mathbf{Cu}^{2+}/\mathbf{Cu}$ and $\mathbf{Zn}^{2+}/\mathbf{Zn}$ half-cells. [4 marks]
- (c) Calculate the EMF of the cell using the data below:

$$E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = +0.34V, E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = -0.76V$$

[3 marks]

2.

- (a) Explain the difference between **electrolytic** and **galvanic** cells in terms of energy change and electrode polarity. [3 marks]
- (b) During electrolysis of aqueous copper(II) sulfate using copper electrodes:
- (i) Identify the products formed at both electrodes.
- (ii) Write the half equations.
- (iii) Explain why the blue color of the solution remains unchanged. [5 marks]
- (c) Sketch a well-labeled diagram of the apparatus used in this electrolysis. [2 marks]

3.

- (a) State Faraday's First and Second Laws of Electrolysis. [2 marks]
- (b) 0.54 g of silver was deposited during the electrolysis of silver nitrate solution using a current of 2 A. Calculate the time required. (Relative atomic mass of Ag = 108) [4 marks]
- (c) State two experimental sources of error that can affect the accuracy of such an electrolysis experiment. [4 marks]

4_

- (a) Write the **Nernst equation** and explain the meaning of each term. [3 marks]
- (b) The potential of a copper electrode in a Cu^{2+} solution is +0.25 V at 25° C. Calculate the concentration of Cu^{2+} ions if the standard electrode potential is +0.34 V. [5 marks]
- (c) Explain why electrode potential depends on **temperature** and **concentration**. [2 marks]

5.

- (a) Explain how **electrochemical series** is useful in:
- (i) Predicting feasibility of redox reactions
- (ii) Metal extraction
- (iii) Electroplating [6 marks]
- (b) Suggest the **anode and cathode reactions** when an iron spoon is electroplated with silver. [4 marks]

CHEMICAL KINETICS SECTION

6.

- (a) Define the following terms:
- (i) Rate of reaction
- (ii) Activation energy
- (iii) Catalyst [3 marks]
- (b) State three factors that affect the rate of a chemical reaction and explain how each influences the rate. [6 marks]
- (c) Draw a labeled energy profile diagram for a catalyzed and uncatalyzed reaction. [1 mark]

7.

(a) Write the general rate law expression for a reaction:

$$aA + bB \rightarrow cC + dD$$

and explain the meaning of each term. [3 marks]

(b) The rate of a reaction between A and B was found to obey the rate equation:

$$Rate = k[A]^2[B]$$

If the concentration of A is doubled while B remains constant, by what factor does the rate change? [3 marks]

(c) The rate constant, k, of a reaction double when temperature increases from 300 K to 310 K. Calculate the activation energy of the reaction ($R = 8.31 \text{ Jmol}^{-1}\text{K}^{-1}$). [4 marks]

8.

- (a) Define order of reaction and molecularity of a reaction. [2 marks]
- (b) Explain two differences between the two. [2 marks]
- (c) The decomposition of N_2O_5 follows the first-order kinetics. Given that 50% decomposes in 30 minutes, calculate the rate constant and the time

required for 75% decomposition. [6 marks]

9.

- (a) Explain how temperature affects the rate of a reaction using the **collision theory**. [4 marks]
- (b) Describe how a catalyst affects:
- (i) Activation energy
- (ii) Rate of reaction [2 marks]
- (c) The following data were obtained for a reaction:

[A] (mol dm ⁻³)	[B] (mol dm ⁻³)	Rate (mol dm ⁻³ s ⁻¹)
0.1	0.1	2.0×10^{-5}
0.2	0.1	8.0×10^{-5}
0.1	0.2	4.0×10^{-5}

Determine the **order of reaction** with respect to A and B. [4 marks]

10.

- (a) Differentiate between instantaneous and average rate of reaction. [2 marks]
- (b) Explain how you would determine the order of reaction experimentally using the initial rates method. [4 marks]
- (c) Sketch and label a graph showing how **concentration of reactant** changes with time for a **first-order reaction**. [4 marks]

THE END

Nothing is permanent